Survival of Icelandic airborne microbes towards simulated atmospheric stress factors
New publication by Daussin A, Vannier P, Mater É, Šantl-Temkiv T, Cockell C, Marteinsson VÞ.
Abstract:
Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms, wildland fires, and volcano eruptions. Only microbial cells that survive the various atmospheric stressors during their transportation will deposit and colonize new environments. These stressors include desiccation, oxidative stress, solar radiation, osmotic shock, and freeze–thaw cycles. In this paper, we specifically studied the survival of representative microbial model strains isolated from the atmosphere over pristine volcanic landscapes to understand their potential to successfully disperse to novel terrestrial environments. In line with previous studies, we found that the most stringent selection factors were the freeze–thaw and osmotic shock cycles and that the strains affiliated with Proteobacteria and Ascomycota were the best to survive simulated atmospheric stresses. Specifically, isolates belonging to Paracoccus marinus, Janthinobacterium rivuli, and Sarocladium kiliense exhibited the highest levels of resistance to atmospheric stress. However, the number of strains tested in our study was limited and caution should be taken when generalizing these findings.